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DNA Sequence Alignment
Introduction

Similarity and alignment of DNA sequence can be applied to lots of biological technologies. We compare two sequence to search for the homology of a newly one of the reference sequence so that we can analyze the relation between the two DNA sequences. DNA sequence analysis is a fast-growing field and many similarity measurement of sequence of methods have been proposed and developed. Because the numbers of DNA sequence are always huge, we have to seek for the help of computer. 
Therefore, there are many algorithms for solving the sequence alignment have been proposed.

    Dynamic programming is the currently most popular algorithm for determining the similarity between two sequences. However, its complexities are O(MN), where M and N represent the lengths of two DNA sequences been compared. Thus, some fast DNA analyzing tool such as FASTA and BLAST will be introduced later in this paper. FASTA and BLAST are the algorithms can approximate the result of dynamic programming and they are also very popular.
    Next, we will introduce a new algorithm for comparing the similarity between the two DNA sequences, that is, the unitary discrete correlation (UDCR) algorithm. We use it instead of dynamic programming for similarity measurement. UDCR can reduce the complexities of semi-global and local alignment from O(MN) to O(N(log2M) or O(L2), where M and N represent the lengths of the two DNA sequences being compared, and L is the size of the matched subsequences.
    Finally, we combine the advantage of dynamic programming and UDCR and develop a new algorithm, we call it combined unitary discrete correlation (CUDCR) algorithm. This algorithm requires less computing time and more accurate than dynamic programming. For example, in semi-global and local alignments, only a small part of input DNA sequence is actually be used. Thus, we can use UCDR algorithm to measure the better-aligned location and then use dynamic programming (DP) algorithm to find the detailed sequence alignment.
1.DNA Sequence Assembly
1.1 Shotgun Sequencing

Before we introduce the DNA alignment algorithm, we briefly present the structure of DNA sequence assembly. Due to the current technology, we can not read a whole strand of DNA at one time, but a strand of 350 to 1000 nucleotides in length instead. Thus, we have to reconstruct a whole DNA sequence from a set of its subsequences called fragment. The technique presented above is DNA sequence assembly problem or DNA sequencing.

    The most popular DNA sequencing is shotgun sequencing. It requires a lot of fragments to reconstruct the original DNA sequence. The fragment may be created by breaking of DNA, copies of the original one and at random intervals of the original one. The central idea is that we can infer the fragments from copies of the original DNA sequence will overlap with each other and they will merge into a new fragment called contig or meta-fragment (See Fig.1.1). To insure the successful reconstruction, it’s recommended that that the cover ratio of the fragments should be 5x to 10x.

[image: image1]
Fig.1.1 The concept of shotgun sequencing.
1.2 Greedy algorithm
Shotgun sequencing is essentially a greedy algorithm. The process of greedy algorithm is presented as below:

Step1. Calculate pair-wise alignments of all fragments.
Step2. Choose two fragments with the largest overlap.
Step3. Merge the chosen fragments.
Step4. Repeat step 2 and 3 until there is not any fragment which can be merged. 
1.3 Issues of shotgun sequencing

   There are four major issues in shotgun sequencing as below:
1. The errors in fragments.
2. The unknown orientation of a fragment.
3. Gaps in fragment coverage.
4. Repeats in fragments.
1.4 The shortest superstring problem 

Shotgun sequencing seems a method for DNA sequencing; however, the wrong assembled DNA sequence will happen due to the false overlaps between sequences. Shortest superstring means the shortest string which contains all fragments in a given set. Suppose there is no sequencing error and the fragments are randomly generated, the output sequence approaches the original DNA sequence as the number of fragments increases. However, the issues of shotgun sequencing we mentioned above may happen, it seems not a good solution. 
Terefore, the sequence by hybridization (SBH) techniques comes in our mind. SBH contains 
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 very short k-letter fragments called probes. Next, the SBH technique tries to reconstruct the DNA sequence from the k-letter probe composition. Suppose that there is not any sequencing error, the output string approaches the original DNA sequence as the value of k increases. Now the directed path graph is used to solve the SBH problem efficiently. The SBH adopts V (vertexes in the graph) as a set of fragments and 
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 (edges in the graph) as the edge between two fragments of V, then the directed path graph G of the DNA sequence can be figured out. With the aid of the directed path graph G, the sequencing problem is reduced to finding Hamiltonian path in G. It is also proved that finding the Eulerian path is equivalent to finding the Hamiltonian path. However, SBH has many unsolved problem now. A small k value makes it hard to recreate the DNA sequence while a large k value makes the computation huge. Unfortunately, the value of k is limited to 8 or 10 currently.
2. Dynamic Programming
    We have introduced DP algorithm before and now we will present how DP work in detail. Note that the term ”programming” is similar to the word “optimization”. DP is based on the divide-and-conquer method. It divides the original problem into sub-problems, and the sub-problems will be divided into more sub-problems, one after another. DP solves this problem by the recurrence relation instead of wasting time on unnecessary computation.
2.1 The edit distance between two strings
We need a way to score an alignment to find the optimal sequence alignment. There is a common way called “edit distance” to measure what is the difference between the two strings. There are four edit operators in the edit distance --- insertion, deletion, replacement (substitution) and match. Insertions and deletions are both called the indels, and an indel is represented by a dash “-” in an alignment. The insertion operation, denoted by I, indicates inserting an “empty” letter to the first sequence, and the deletion operation, denoted by D, indicates deleting a letter from the first sequence. (Note that an insertion/deletion in one string can be seen as deletion/insertion in another one). The replacement operation, denoted by R, means there is a mismatch between the two strings at the aligned position. In addition, a match, denoted by M, means the aligned characters of the two strings are identical. Here, we have a example as Fig.2.1 shown.


[image: image4]
Fig.2.1  The global alignment of “abbde” and “acdec”.

2.2 String similarity method
    String similarity method is an alternative method to edit distance method and both of them are developed at the same time. String similarity method is often preferred than the edit distance method and it was proved that both of them can transform to each other by a formula. Here, we give a example as shown in Fig.2.2 and Fig.2.3. Let A be the alphabet used by strings and A={a, b, c, -}. We define the similarity score as 
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, s(x, y) represents the score from scoring matrix of A and L is the length of the string.
	
	a
	b
	c
	-

	a
	1
	-1
	-2
	-1

	b
	-1
	3
	-2
	0

	c
	-2
	-2
	0
	-2

	-
	-1
	0
	-2
	0


Fig.2.2 The scoring matrix of A.


[image: image10]
Fig. 2.3 The calculation of similarity score.

We can found that the scoring matrix A is a symmetric matrix and this simple example above can demonstrate how to calculate the similarity score of an alignment.
2.3 Dynamic programming calculation of similarity
    DP algorithm has three essential components- the recurrence relation, the tabular computation, and the traceback.

· The recurrence relation:

    The recurrence relation establishes a recursive relationship between the value of D(i,j), for i and j both positive and D(i,j) means that the distance between S1(i) and S2(j). The recurrence relation has the base condition below:

   D(i, 0)=i                           (2.1)

and
D(0, j)=j                           (2.2)

    The recurrence relation for D(i,j) when D(i,j) when both i and j are strictly positive is
D(i,j)=min[D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+1]        (2.3)

Where t(i, j) is defined to have value 1 if  S1(i) 
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 S2(j), and t(i, j) has the value 0 if S1(i) = S2(j).
Here, we give a example as shown in Fig.2.4. Let S1=’vintner’ and S2=’writers’. First, we construct a table computing the edit distance between ’vintner’ and ’writers’.
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             Fig.2.4 The computing table with the base condition
· Tabular computation
With the base condition, it means that we have some initial value in D(i,j) table. 
Next, we can compute all the value in this table by the equation: 

D(i,j)=min[D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+1] as in (2.3). By this rule, we can find the final table as shown in Fig.2.5. 
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Fig.2.5 The computing table with the final result

· The traceback
After the tabular computation is finished, we have to find out the traceback in this computation table. In order to find out the traceback, we use the pointers to point where the direction is. We use the bottom-up computation. We start at the right-bottom position in this table and judge where the pointer point by a specified formula (From this case, we start at the position D(8,8)). The formula is below:
Set a pointer from (i,j) to cell (i,j-1) if D(i,j)= D(i,j-1)+1         (2.4)
Set a pointer from (i,j) to cell (i-1,j) if D(i,j)= D(i-1,j)+1         (2.5)
Set a pointer from (i,j) to cell (i-1,j-1) if D(i,j)= D(i-1,j-1)+t(i.j)   (2.6)
    From the formula (2.4) (2.5) and (2.6), we can figure that it only need to compute three cases by these formula for one cell, and then we can decide which direction the next cell points. Because there are three routes for every single cell, it will be “six” permutation combinations. However, the results are not always distinct at all. For this case, we just have three results as shown in Fig.2.6 Fig.2.7 and Fig.2.8.
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Fig 2.6 The first result
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Fig 2.7 The secend result
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Fig 2.8 The third result
    All of these results are equivalent in transcripts. It means that they can the same similarity score.  We note that the number “1” in cell represent the route from right to left, denote by “
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”,  the number “2” in cell represent the route from down to up,  denote by “
[image: image13.wmf]­

”, and the number “3” in cell represent the route from right-down to left-up, denote by “
[image: image14.wmf]^

”. After we simulate this case with matlab, there will be three result as shown in Fig.2.9, and these results have the same similarity score.
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Fig.2.9 Three best result of string comparison

3. Popular Database Sequence Similarity Search Tools
- FASTA and BLAST
    Due to the long computational time for searching for the similarity of long sequences, so some fast heuristic tools such as FASTA and BLAST have been very popular. The two algorithms approximate the result of dynamic programming. The main idea of heuristic is that similar sequences will probably share some short identical matches.

3.1 Introduction to FASTA
    FASTA is a program for rapid alignment of pairs of protein and DNA sequences. FASTA only search for the consecutive identities of length k (the k-tuple words) instead of the dot matrix method, and it really save some searching time. (Actually, the dot matrix method can be view as the special case when k is equal to 1)There are several steps when we adapt FASTA algorithm to do sequence alignments as below:
· STEP1. Establish the lookup table (or Hash table) to show the positions of   

the k-tuple words in a sequence.
Note that k is usually set as 4~6 for DNA sequences and 1~2 for protein sequences. The positions of each k-tuple words in a sequence would be recorded on the lookup table. Let us check two DNA sequences as shown in Table 3.1, and the offset is compare the first sequence to the second sequence.
	Index
	2-tuple word
	Position (1)
	Position (2)
	Offset

	1
	GG
	
	
	

	2
	TG
	
	1
	

	3
	AG
	3
	3, 11
	0, -8

	4
	CG
	11
	
	

	5
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	4
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	TT
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	AT
	1, 8
	7
	-6, 1

	8
	CT
	
	
	

	9
	GA
	
	2
	

	10
	TA
	2
	
	

	11
	AA
	7
	6, 10
	1, -3

	12
	CA
	6
	5, 9
	1, -3

	13
	GC
	
	4
	

	14
	TC
	5, 9
	8
	-3, 1

	15
	AC
	
	
	

	16
	CC
	10
	
	


Table 3.1. The lookup table including the offset for two DNA sequences “ATAGTCAATCCG” and “TGAGCAATCAAG”, with k=2.
· STEP2. Use hashing to reveal a region of alignment between two sequences 
    Calculate the offsets by subtracting the positions of the common k-tuple words recorded on the lookup table for the first sequence from that for the second, so that we can get the common offsets and thus reveal a region of alignment between the two sequences as shown in Fig 3.1.
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Fig. 3.1 Each x indicates a word hit, and the word hits sharing the same offset are on a same diagonal.

· STEP3. Find the 10 best diagonal regions.
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Fig. 3.2 The 10 best diagonals of the two sequences we used to figure Fig.3.1 out.
· STEP4. Keep only the most high-scoring diagonal regions.
Any diagonal regions with scores lower than a threshold will be deleted again. Thus, we are left with 10 or less diagonal regions. These remained diagonal regions are shown in Fig 3.3.
[image: image18.png]



             Fig. 3.3 From Fig. 3.2, we only keep the diagonals with      

          score which is greater than a threshold.
· STEP5. Try to join these remained diagonal regions into a longer alignment.
FASTA then checks to see whether these remained diagonal regions may be joined together. Note that in Fig 3.3, two diagonal regions can be joined together as long as one of them is located on the right and upper side of one another. FASTA tries to find the joined regions with the maximal score, and this score is exploited to rank the database sequences.

    Thus, we can recognize that which position the sequences match by using FASTA.
3.2 Introduction to BLAST

    BLAST (Basic Local Alignment Search Tool) is a program performing rapid sequence similarity search similar to FASTA. The major difference between them is BLAST is faster than FASTA because BLAST uses the relative high-scoring word to search sequences similarity instead of using the absolute hitting words. 
Make a k-tuple word list of the query sequence. The speed and sensitivity of BLAST are decided by the value of k. Higher value of k gives higher speed but lower sensitivity while lower value of k makes BLAST more sensitive but slower simultaneously. Take 
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 for example, we list the words of length 3 in the query protein sequence (k is usually 11 for a DNA sequence) “sequentially”, until the last letter of the query sequence is included. The method can be illustrated in Fig 3.4.


Fig. 3.4 The k-tuple word list of the query sequence PQGEFG.
    Then, the next step is one of the main differences between BLAST and FASTA. FASTA only cares about all of the common in the database and query sequences; however, BLAST cares about the high-scoring words. The words whose score higher than threshold T will be remained in the matching word list. Conversely, the lower scoring words are discarded. For example, the score obtained by comparing PQG with PEG and PQA is 15 and 12, respectively. While T is 13, PEG is kept and PQA is abandoned. 
On the whole, the BLAST has two versions- Original BLAST and New BLAST (Gapped BLAST). The original version of BLAST stretches a longer ungapped alignment (any gap is not allowed in the alignment) between the query and database sequence in left and right directions, form the position where exact match is scanned. The extension does not stop until the score of extended region is over D-score lower than the current highest score. We set the highest accumulative scores as HSP as shown in Fig.3.5.

Fig. 3.5 An extension of the exact match to form the HSP.
    Gapped BLAST is more sensitive at augmented speed with comparison to the original one. The original BLAST only generates ungapped alignments including the initially found HSPs individually, even though it is more than one HSP found in one database sequence. On the contrary, gapped BLAST produces a single alignment with gaps that can include all of the initially found HSP regions whose score is above a threshold.
4. Unitary Discrete Correlation (UCDR) algorithm
Instead of using dynamic programming and comparing with k-tuple word, we will present a novel algorithm combining unitary mapping and discrete correlation.
4.1 Unitary Mapping for a DNA Sequence
    There are four types of nucleotide in a DNA sequence: adenine(A), guanine(G), thymine(T), and cytosine(C). In order to simplify the computation, we use 1, -1, j, -j (unitary values) to represent A, T, G, and C. 
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Fig.4.1 Unitary matching for four types of nucleotide
    Many problems in DNA sequences analysis can be solved efficiently by using the unitary mapping together with the discrete correlation algorithm (see section 4.2). Besides, we can use the NTT to implement the discrete correlation algorithm without floating-point processor due to the unitary value matching.
4.2 Discrete Correlation for Matching Computation

Suppose that there are two DNA sequences, x and y, where 
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We defined three vectors s[n], s1[n], and s2[n] (((M+1 ( n ( N(1) as follows:)

s[n] (similarity index):     the number of nucleotides of xn that satisfy xn[(] = y[(].       

s1[n] (pair-similarity index):  the number of nucleotides of xn that satisfy bx,n[(] =
(by[(], where bx,n and by are the unitary value representations of xn and y, 
respectively (see section 4.1). In fact, bx,n[(] = (by[(] means that x[n+(] is different from y[(] but they belong to the same pair (A-T pair or G-C pair).    

s2[n] (pair-different index):  the number of nucleotides of xn that satisfy bx,n[(] =  
(j(by[(] (i.e., x[n+(] is quite different from y[(]. Thus they do not belong to the same 
pair).( xn[(] = x[( + n],  ( = 0, 1, ….., M (1,  n = -M+1, -M+2, ….., N(1.)   (4.2) 
To calculate s[n], we first use the method in section 4.1 to convert x and y into     
two numerical vectors bx[n] and by[n]. Then we calculate the following discrete    correlations: 

[image: image22.wmf][

]

[

]

[

]

[

]

[

]

1

1

0

M

xyxy

znbnbnbnb

t

tt

-

=

=Ä=+×

å

                 (4.3)

 
[image: image23.wmf][

]

[

]

[

]

[

]

[

]

1

2222

2

0

M

xyxy

znbnbnbnb

t

tt

-

=

=Ä=+×

å

                 (4.4)

where the upper bar means conjugation. After some calculation, we can prove that   
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Then, together with the equality that s[n]+s1[n]+s2[n] = Ln, where Ln is the length of the overlapped subsequence between xn and y, we can solve s[n] to be:
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where 
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We give an example as follows. Suppose that there are two DNA sequences:
x = ‘GTAGCTGAACTGAAC’,           y = ‘AACTGAA’,
The length of x is N = 15 and the length of y is M = 7. First, we use the unitary value representation to convert these sequences into the vectors bx and by:    
  bx = [j, (1, 1, j, (j, (1, j, 1, 1, (j, (1, j, 1, 1, (j],  by = [1, 1, (j, (1, j, 1, 1].
Then we calculate the discrete correlations in equation (4.3) and (4.4) and we obtain
z1=[j,-1+j, 1,1+j, -j,-1-j,-3+j2, j3,6+j,1-j4,-4-j3,-4+j3,2+j5, 7,2-j5,-3-j3,-3+j2, 1+j3, 3, 1-j, -j],  
z2=[(1, 0, 3, (2, (1, 0, (1, 1, 5, (5, 1, 1, (3, 7, (3, 0, 1, (2, 3, 0, (1].
Then we use (4.5) to get the similarity index s[n] and obtain
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Since s[7]=7=M, we can conclude that the 7-length subsequence starting from s[7] (i.e.,{s[7],s[8],….,s[13]}) is all the same as y and the result is as below:
  x =                       ‘GTAGCTGAACTGAAC’,           
  y (shifted 7 entries rightward) =          ‘AACTGAA’.     
        (4.6)
From the result as (4.6) shown, we can conclude that after sequence y shifted 7 entries rightward will match or be similar to sequence x. By using UDCR, we can find out the most appropriate sequencing position which the referenced DNA sequences match to.
Conclusion
DNA is usually a huge amount of sequences. When we use DP algorithm to compare the sample sequences with the referenced sequences in the database, we must waste a lot of time from the first element to the last one . However, by using UDCR, it really saves us a lot of computation time due to its fast algorithm for searching the right position. In addition, we can combine UDCR and DP algorithm to a new algorithm called CUDCR. The advantage of CUDCR is saving more time and as accurate as UDCR. The method is using UDCR first to find out the possible position alignment of sequences and then do DP algorithm to get the accurate result. Moreover, we still can implement CUDCR by the NTT instead of DFT due to less computation and this method also save some computation time. 
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S2: a  c   -   b  


Pairwise score : 1 - 2  - 2   0


Similarity score = 1-2-2+0 = -3





Word 4: EFG





Word 3: GEF





Word 2: QGE





Word 1: PQG





Query sequence: PQGEFG





HSP





Maximal aggregate score = 7+7+2+6+1 = 23





Score: -2   7   7   2    6    1   -1





Exact match is scanned.





Database sequence: D   P   P   E   G   V   V





Query sequence: R   P   P   Q   G   L   F








_1299769237.unknown

_1300199581.unknown

_1300395008.unknown

_1300396503.unknown

_1300397210.unknown

_1300398050.unknown

_1300395017.unknown

_1300390218.unknown

_1300394024.unknown

_1300373466.unknown

_1300198008.unknown

_1300198031.unknown

_1300197949.unknown

_1299765879.unknown

_1299765980.unknown

_1299765993.unknown

_1299765950.unknown

_1299180734.unknown

_1299765845.unknown

_1186023704.unknown

_1299180733.unknown

_1183989874.unknown

